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Abstract—The paper considers the optimal design of elastic beam-columns which are acted upon simul-
taneously by an axial compressive and transverse forces. The design has to be such that it uses least
amount of material to achieve prescribed strength under given loading conditions. Strength constraints are
imposed to limit the intensity of maximum normal (flexural and axial) and shear stresses within the member.
The optimal designs are also checked against serviceability and buckling requirements. Concepts from
Differential Game Theory are employed for the solution of the optimization problem. Solutions are
presented for beam-columns of different cross-sectional shapes and boundary conditions subjected to
various combinations of axial and transverse forces.

INTRODUCTION

Optimal design of structural elements that use the least amount of material to perform a given
function has received considerable attention in the past two decades[1-10]. Several authors
used classical variational techniques for solution of the optimization problems[4-10]. For
instance, Karihaloo and Parbery[4-9] obtained optimal solutions for single purpose and
multipurpose beam-columns for stiffness (serviceability) requirements. However, since from a
practical viewpoint, the initial design is based on strength requirements limiting the maximum
stresses to allowable values, it is important to obtain optimal strength solutions.

The present paper considers the optimal design of elastic beam-columns that use least
amount of material to achieve prescribed strength under given loading conditions. Concepts
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from Differential Game " heory are employed for the solution of the problem. These concepts
have been previously sdopted to the optimization problems of statically determinate and
indeterminate elastic members in flexure[1-3, 11]. The method is illustrated by considering a
pin-ended beam-column under the simultaneous action of an axial compression and transverse
distributed load. Strength constraints are specified to limit the intensity of maximum normal
(fAexural and axial) and shear stresses within the member. Optimal strength designs are checked
against serviceability and buckling requirements. Solutions are also presented for beam-
columns of different cross-sectional shapes and boundary conditions, subjected to various
combinations of axial and transverse forces.

1. STATEMENT OF THE PROBLEM

Consider an elastic beam-column acted upon simultaneously by an axial compressive force
P*, and transverse forces f*(x*) which cause berding moment M*(x*) at a section x* of the
member (Fig. 1). Taking the origin of co-ordinates at the left end of the member, the equilibrium
equation can be written in the following dimensionless form:

a"y,+Py+ M, (x)=0, 0=x=<I1. 1

The geometric boundary conditions at the ends of the member must be specified for obtaining a
solution of eqn (1). For instance, in case of a pinned beam-column these conditions are:

y©=0, y(1)=0. 03

On the other hand, when mixed boundary conditions are specified, as in the case of a
pinned-fixed beam-column considered later in the paper, eqn (1) is replaced by the more general
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equilibrium equation:
(anyxx)xx+Pyxx+f(x)=0, 0=sx=1 (3)

where vy = y*/L is the transverse deflection and subscript x denotes differentiation with respect
to the dimensionless linear co-ordinate x = x*/L, L being the linear extent of the member,
P = P¥/[EcL®2, M,(x) = M*(x*)/EcL® " and f(x) = f*(x*)/EcL®" ¥, where E is Young’s
modulus of the material and ¢ and n are constants. It is assumed that the second moment of
area I(x*) and the area of cross-section A(x*) are related through:

I=cA" 4)

where the constants ¢ and n are determined by the cross-sectional shape. Thus n = 1 represents
a sandwich cross-section or a rectangular cross-section of constant depth but varying width,
n =2—a geometrically similar cross-section (say, circular) and n = 3—a rectangular cross-
section of constant width and varying depth. The non-dimensional cross-sectional area is
defined by a(x) = A(x*)/L%.

The strength (stress) constraints on the beam-column of a given cross-sectional form may be
prescribed as

Q,‘EUi(X, Svf’ )’, Ms Qv Qa, ax)so (l= 1’2) (5)

where x and s are co-ordinates of the cross-sectional fibre at which the stress is being
calculated, a(x) ts the unknown cross-sectional area (the control) controlling the stress and
a,(x) its first derivative with respect to x; M and Q are the two main force resultants namely
the bending moment and shear force which are related through

dM _ 5 dQ_ _
dX - Q’ dx f(x)t (6)

where f(x) is the external load at an arbitrary section x along the member. The.two stresses in
(5) refer to normal and shear stress respectively. The normal stress has two components; one
due to axial compression and the other due to fiexure. Note that M and Q are dependent on y,
which must be obtained in such a way that the equilibrium eqns (1) or (3) and the associated
boundary conditions are satisfied.

The optimization problem consists in determining the control a(x) that meets the strength
constraints (5) and minimizes the mass W* of the beam column

L
*=y I A(x*)dx* (N
0

where v is the mass density of the material. In dimensionless form the mass function is given
by

1
W= fo a(x) dx ®)

where W = W*[yL>,
The optimization problem formulated above can be viewed as a differential game problem
(game against Nature) whose solution can be sought by the minimax (or guaranteed) approach.

2. MINIMAX APPROACH

We indicate a method which allows us to reduce the solution of the game problem to the
determination of the extrema of some variational problem. This method is based on the
assumption that it is possible to obtain the dependence of elastic solutions on controls in
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explicit form. In other words, it is assumed that the force resultants (bending moment M and
shear force Q) can be found in a closed form M = M(x, y,f, @, a,) and Q = Q(x, y, f, a, a,).1
Substituting the expressions for M and Q into the Lh.s. of the inequalities (5), we obtain

Qi(xv S, f’ »a ax)sov (l= l, 2) (9)

where

Q,'(x, s, f’ y! a, ax) = (T,‘(x, S, f’ M(xa Y, f’ a, ax)’Q(xa )’, fv a, ax)’ a, ax)-

The maxima of Q,(x, s, f, y, a, a,) with respect to s and f are determined for fixed x and a.
Assume that the maxima are attained for s = s% and f = f%, i.e.

Qi(x, s%, %, y, @, &) = max m}ax Qix, s f,y a ay) (10

and denote
O%(x, y, a, a,) = Qix, s¥(x, a. ay), f(x, a, ), ¥, @, ;). (1

Note that there is no need for maximization with respect to f if the external loading is
deterministic in nature. Making use of the notation (11), the strength constraints (9) can be
written as

Q¥x, y, @, a,)=0. (12)

When the deflection y is obtained as a function of x from eqns (1) or (3) and the associated
boundary conditions, the strength constraints may be formally re-written as

Q*x, a, a,) <0. (13)

Thus, the initial problem (1)~(8) reduces to a variational problem of minimizing with respect to
a the integral (8) under the differential constraints (13) and any other conditions imposed on the
function a(x).

3. ILLUSTRATIVE EXAMPLE

Consider the beam-column shown in Fig. 1 which is subjected to a general loading system in
xy-plane. Let the locations of the concentrated forces W* be designated by I; and that of
moments M* by c; both measured from the left end of the member. For clarity of presentation,
the asterisks are omitted in the sequel.

LA -9 W
2 d *
Mo M L ﬁz ML
o / ] \ p*
" . ' x? /
R, R*
0 L L
L |
byt

Fig. 1. Beam-column with general loading.

tin determinate beam-column structures, M and Q, like the desired control a, are expressible as function of x, f and v
alone. However, in indeterminate beam-column structures the bending moment and shear force depend not oniy on x, f
and y but also on the control a through the compatibility (deformation) requirement. In general, the expressions for M and
Q involve as many unknowns as the degree of redundancy of the structure. The unknowns may be support reactions
and/or the locations of points of inflexion; additional conditions for determining these unknowns, together with a, foliow
from compatibility requirements.
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Let the number of concentrated forces and moments acting between x = 0 and the section x
be m, and m, respectively. Then the expressions for shear force Q and bending moment M at
section x are

“r-Sw-[ dy(x)
Q=R zlw,- jo fnydn + P X (14)

M = Rox= Mo [ fn)x =) dm = 3, Witx— b+ 5 M+ Py, (19

where f(x) is the intensity of any lateral] distributed loading and R, the terminal shear force at
x =0. Note that both M and Q are functions of the design a(x) through the unknown y(x). For
a given set of loads f(x), W, M; and P, the deflection of the member can be found by Galerkin’s
method[12].

The intensity of the normal stress (due to bending moment and axial force) o, and the
transverse (shear) stress 7., at any cross-section x of the beam-column must satisfy the
following strength constraints:

o =lo,] - 0e=0,
(op] = |Tx,\‘l - TOSO' (16)

where o, and 7, are prescribed positive constants. Sometimes it is convenient to specify the
following strength criterion

(00 +ari)? -k =0. (17

If a = 4, it restricts the maximum shear stress and for « = 3 the value of the strain energy. Note
that if « =4 and o, = 21, = k, (17) is identical to (16).
From elastic beam-column theory, ¢, and 7, are given by

Ms(x) | P _xd (Ma(x’ S>) (18)

%I A TR\ Tk
where s(x) defines the position of a cross-sectional fibre, and K and a(x, s) are determined by
the cross-sectional shape. For the mass-stiffness relationship (4) assumed in the present paper,

the following expressions result:

For n = 1, I(x) = b(x)h’/12 (h = constant depth, b(x) = variable width), K = 1/b(x), a(x, 5) =
b(x)(h*/4)— s3)/2 and — hj2<s <h[2; for n =2, I(x) = wr'(x)/4 (where r(x) is variable linear
dimension - radius of a circular section), K = I/[3(r(x)-s)", a(x, s)=(r¥x)- s?)*? and
-r(x)ss=r(x); and for n =3, I(x)=bh*x)/12, K = 1/b, a(x, s) = (b[2)((h*(x)/4) - s?) and
—h(x)2=s = h(x)/2.

We now derive optimal solutions for various values of n appearing in the mass-stifiness
relationship (4).

3.1 n = 1 (Rectangular cross-section of constant depth, h, and variable width b(x))
Strength constraints (16), together with (18), take the following form

_ 1 112Ms _
U‘=b(x)h17r+P‘ 90=0,

2
o2= g (=)@l 700 1

Since o, and o attain their maximum values at s = h/2 and s = 0, respectively, the inequalities
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(19) can be written as

1
b(x)h

3Q|
2b(x)h

“6'h&l‘+P|—0’050,

~1=0. (20)

The function b(x) is to be determined in such a way that the inequalities (20) are satisfied
and the total mass W* = yhf{b(x) dx is minimized. The solution follows directly from (20)

b(x)= max{lﬁ+Pll 2,"_0} (21)

For example, consider a pin-ended beam-column subject to a uniformly distributed lateral load
of intensity w and an axial compression P. The optimal solution for one half of the member is
given in the following dimensionless form

B(1-2x)+Cy,; 0=x=x,

Dx(1-x)+ Fy+G; x;=x=<1]2 (22)

a(x)={

where a(x) = b(x)h/L?, B =3w/dr,L, C =3P[2r,L? D =3w/ho,, F=6P/hLay, G = Plo,L>.
Note that y(x), and hence a(x) is obtained by an iterative procedure from (1) and (22) using
Galerkin’s method.

3.2 n =2 (Geometrically similar sections say, circular)

Although the solution procedure is the same for beam-columns of any geometrically similar
cross-sectional shape, the method is illustrated with respect to a beam-column of circular
cross-section. With the aid of (18) the inequalities (16) become

1
r (x)

5,M—S+P| 5o =<0, 23)

o= —7

—a—| o) - 2)+M (r(x) r(x)) — 1,50, 4)

Rk pe (x)

In order to evaluate the maxima of o, and o, we note that o, attains its maximum at s = r(x)
and o, either at s>=0 or at s>= r’(x). Hence it follows that

1 p :(XM) l oe=0, 25)
max(¢, Y2) ~ 70=<0, (26)
where
=g |- M @n
A 2—; (28)

From (26)~(28) the following differential inequalities result

Q.IQ.

s%mm{Qr(x)+ 3Br(x), Brx)), (29)
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K]/!— x{Qr(x) - 38r¥x), - Bri(x)}, (30)

Q-la.

where B = w1/4.

_ﬂgn Q is positive, the solution domain can be divided into two sub-domains s,(r(x) =<
VQI2B) and so(r(x) = \/_Qfﬁ). In these sub-domains the differential inequalities (29), (30) can
be written as

Br (x)

*[Qr(X) 38r'(x)] < (r(x)es,) (31

3
- <a<"' ) (rxyesy). 32)

It should be mentioned that the inequalities (32) are consistent for any value of r(x)es,, but that
the inequalities (31) can be solved if

x) = ZQE (33)

From (31) and (32) it follows that the admissible functions r(x) must satisfy the differential
inequality

91>~[Qr ~38P (). (34)

subject to the solvability condition (33).
Proceeding along similar lines for negative Q, we find the admissible functions r{x) must
satisfy the differential inequality

&< 10rx) + 38r00) (35)

subject again to the solvability condition (33). The actual optimal design r(x) is chosen by
studying the behaviour of admissible curves r(x) obtained as a result of solving the differential
inequalities (34) and (35).

The optimization problem therefore reduces to determining the r(x) that satisfies (25), (33)
and (34) or (35) and minimizes the total mass (8) of the beam-column.

Again, consider the example of a pin-ended beam-column acted upon by a uniformly
distributed load of intensity w and axial compression P. The optimal solution in dimensionless
form is given by

(36)

where
=[{B+VB-C}"+{B-VBI-C}"}='"", (B>~ C >0)
4[Dx(1 - x) + Gy(x))’

F,= s
Dx*(3-2x)+6G f y(n)dn
0

B = Hx(1—x)+ Sy(x), C = P*[27ma¢’L®, D = wi21,L, G = PlnL?, H = wiaoL, S = 2P|aoL?,
and F0) = 3{D + Gy,(0)].

The unknown deflection y(x) and hence a(x) are obtained by an iterative procedure from (1)
and (36) involving Galerkin’s technique.
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3.3 n = 3 (Rectangular ¢ross-section with constant width b and variable depth h(x))
Following along lines similar to those for n = 2, it is found that the optimal depth function
h(x) must satisfy the following algebraic and differential inequalities

h(x) =[P +(P?+ 24 bMay)"*112ba, (3N
% = h(x)[Q - 2Ah ()M, (38)
h < QJ3\, (39)

where A = br,/3.
In the example of the pin-ended beam-column acted upon by a uniformly distributed load w
and an axial compressive load P, the non-dimensional optimal control takes the following form:

_ B(1-x)+Cy(x)/x; 0=x=x
a(x) = {D+[D2+ Fx(1-x)+Gy(x))"* x=x=12 (40)
where B =3wfdr,L, C =3P[21,L%, D= Pl20,L? F =3bwldooL?, G =3bPl20,L’. Note that
a(0) = B + Cy,(0).
The unknowns y(x) and a(x) are obtained from (1) and (40) by an iterative procedure using
Galerkin’s method.

In writing the optimal solution (22), (36), (40) it was assumed that shear stresses govern the
design near the supports and normal stresses near the midspan. This will occur if G <
B+ Cy,(0) when n=1, B<2F,(0) when n=2 and D<0.5 [B+ Cy,(0)] when n=3. The
transition point x, is evaluated by equating the two expressions for a(x) in eqns (22), (36) and
(40) and then solving for x;. On the other hand, when the axial load is large, it is likely that the
design of the whole span is governed by the normal stresses alone. It must be mentioned that
because of symmetry, it is sufficient to consider only one half of the beam-column; the
boundary conditions (2) being replaced by

y(0) = y,(1/2)=0. @1

At this stage, it is worth noting that the optimal designs (22), (36) and (40) are characterized
by several common features. For instance, in all the designs the maximum shear stress 7,
achieves the value 7, in the region 0 =< x =< x,, whereas the maximum normal stress o, in any
cross-section does not reach the respective allowable value a,. In the region x,<x<1/2,
am = a9 but 7, <7,. However, at the transition point x, the stresses achieve the maximum
permissible values, i.e. g, = oy and 7,, = 7. Because of symmetry, the characteristics are the
same for the other half of the beam-column. Thus, the optimal beam-column is, in general,
divided into several regions in which shear and normal stresses alternately govern the design.

4. ADDITIONAL EXAMPLES

Optimal solutions for a pin-ended beam-column subjected to other transverse loading
conditions are quoted below in the following dimensionless form:

a(x) = max {F(x), Fxx)}. (42)

The effects of axial and transverse forces are clearly distinguished in the way the expressions
for Fi(x) and Fy(x) are written below.

4.1 Beam-column subjected to a concentrated load Q at x=dn=|

_[a-d)B+Cy,; 0=x=d
F'(")"{Bd—Cy, D dtsx=1 @)
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Fz(x)___{D(l~d)x+Gy+H; O0<x=d

Dd(1-x)+Gv+H; d=sx=I1, 4

where B = 3Q/21,L%, C =3P[27,L’, D = 6Q|aohL, G = 6PjaohL, H = PloyL”.

n=2
_ ABA-dx+ Oy oy
3h5(1—d)x2+ CL y(m)dn |
Fi(x)= (45)
_ 2
_ 2[Bd(1 2x)+ S76))
33 a0-x0 +CL Y dn |
F(x)=[(D+VD'—G)*+(D-VD'-G)""Pr'’; 0sx=<1 (46)
F(0)=3(B(1 - )+ Cy,(0) @
4
Fi(l)= 3 {Bd - Cy,(1)], (48)
where

D={H(1—d)x+$y(x); 0=x=d,
Hd(1-x)+Sy(x); d=x=1,

B = Q|1L% C = P/r,L*, G = P*|27n0,’L®, H =2Qo,L’. S =2P|o,L? and (D*~ G)>0.
n=3
B(l—-d)+Cy(x)/x; 0=sx=d
()= { )+ Cy(x) ; (49)
Bd+ Cy(x)[(1-x); d'=x=1
+[D’+GU-dx + Hy(x)]", O0=x=<
Fn= DD OU= D Il L 0=x=d (50)
D+[D*+Gd(1-x)+ Hy(x)]'"; d=x=1
F(0)=B(-d)+ Cx(0), (51
Fi(1)= Bd ~ Cv,(1), (52)
where B = 3Q[21,L?, C =3P[27,L%, D= P20, G = 3bQl20,L% H = 3bP[20,L°.
4.2 Beam-column subjected to an end moment My at x =0
n=1
F((x)= B~ Cy,, (53)
Fy(x)=D(1-x)+Gy(x)+ H, (54)

where B = 3M,/27,L>, C =3P[21,L°, D = 6My/aohL’, G = 6P|aohL, H = Pl L.
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Fi(x)= 4[B(1—x)+Cly(x)]2 5 0=x=],
3[3(1—x)’+2c f y(n)dn]

F(x)=[(D+VD'=G)"*+(D-VD*-G)"Pr";, 0=x=1

Fi()=3-[B- Cy,(1)]

945

(35)

(56)

&y

where D = H(1-x)+ Sy(x), B = My/1,L*, C = Pir,L?, G =P>*2Tno,’LS, H = 2M,laol?, S =

2P|a,L? and (D*~ G)>0.

n=3

Fi(x)=B+Cy(x)l(1-x); 0=x=1

F(x)=D+VD*+G(1-x)+Hy(x); 0=sx=<1

Fi(1)= B - Cy(1),

where B = 3My/21,L°, C = 3P[27,L?, D = P2aoL?, G = 3Myb/20,L*, H = 3Pb2a,L>.

4.3 A pinned-fixed beam-column subjected to a distributed load w (Fig. 2)

n=1

Fi(x)=|- B+ C(1-2x)+ Dy,

Fy(x)=|-Gx+ Hx(1-x)+ Ry(x)| + S,

(58)

(59

(60)

(61)

(62)

where B = 3M[21,L%, C = 3wldr,L, D = 3P21,L%, G = 6M,Jo,hL?, H = 3w/aoh, R = 6P/a,hL,

S= Pl(ToLz.

n=2

2 G&Y
3 f G(n)dn
0
FI(X)-‘- 2 G(x)2
2_GWP
3 j G(n)dn

; 0sx=x,

XOSISI,

[(G,+ VG —H)*+(G,- VG -H)" =" (G>-H)>0

F = .
Ax) U cos? [% (cos™ qlp”z)]; (G- H)<0,

P
AN 4

/ML

Fig. 2. A clamped-pinned beam-column.

(63)

(64)
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F\(0) = ; {B—C + Dy, (0)] (65)

where G(x)=Bx(1~x)—Cx+Dy(x), Gx)=8x(1-x)-Rx+Ty(x), B=wl2rL, C=
M/7L?, D= Plz,L% H = P3271m0y’L?, R = 2M,Jo,L?, S = wla,L, T = 2Plo,L?, U = 4mp/L’,
p = Pl3mwoo, q = L*G,(x)/m, and % is the point of inflexion.

n=3

-B+C(-x)+Dy(x)/x; 0<x=x,
Fi(x) = (66)
|- Bx+ Cx(1- x)+ Dy(x)lfjx = £}, Xe=x=<1

Fxx)=G +[|-Rx + Sx(1- x)+ Ty(x)| + G, 0=x=<] (67)
Fy(0) = |- B + C + Dy,(0)|, (68)

where B =3M/2r,L’, C=3w/dLr,, D=3P[2L*1, G =Pl2a,L> R=3bM200L" S-=
3bwldo,L?, T = 3bP[20,L’ and £ is the point of inflexion.
Computational aspects of the solutions are briefly discussed in the next section.

S. COMPUTATIONAL SCHEME

In the Galerkin’s method the deflection function is assumed and the error in the Galerkin's
integrals{12] is minimized. It should be noted that not only y but also its higher derivatives
appearing within the Galerkin’s integrals are to be adequately represented by the trial function.
Having chosen a suitable trial function for deflection, the residues in the Galerkin’s integrals are
evaluated by using appropriate expressions for a(x). The procedure is repeated with a different
deflection profile until all the residues are smaller than a prescribed quantity. Newton-Raphson
technique was used for rapid convergence of the solution.

With the exception of the pinned-fixed beam-column (Fig. 2), equilibrium eqn (1) was used
for solution by the above procedure. In the case of a pinned-fixed beam-column the fourth
order eqn (3) had to be used because of the mixed boundary conditions,

Y(0)=0,y(1) =0, y,(1) =0, &y -1 = M), (69)

where M; = M /EcL® V. In this context it should be pointed out that solutions by Galerkin’s
method using the fourth order equation may not converge to the true solution. This situation
arose when the above examples were solved using the fourth order eqn (3) and boundary
conditions and the solutions compared with the results obtained by using second order equation
in Galerkin's technique and by direct numerical integration of the differential eqn (3). This is
probably because of the higher derivatives involved in using eqn (3) which affects the
convergence of Galerkin's method[12]. Therefore the following iterative procedure was adop-
ted to solve the pinned-fixed beam-column, shown in Fig. 2.

For a given problem, the dimensionless fixed end moment M, is assumed in the first iteration
(i = 1). Also a regular function y,, = — 1{0 < x < 1) is assumed in the first iteration (j = 1) within
the inner loop (steps iii-vi).
(i) Assume the redundant (M));
(i) (y)i = —-1.0
(iii) (yx)j = I’l‘yvm d"i
(iv) v =[foyn dn
(v) evaluate a;(x)
i) (yo); = = [C¥(x) + Bx(1 — x) - (M )x]/e" where C = PIEcL®"® B = w/EcL®""®, and M, =

M’JECL(ZH_”.

(vii) Repeat steps (iii) to (vi) if |(¥ux)iss = (¥xs)il > 107°



Optimal strength design of beam-columns 941

(vili) Repeat steps (i-(vii) if y(1)> 107", with (M\)i.; = (My); +4, where 4 is obtained by
Newton-Raphson technique.
Numerical examples are considered in the next section.

6. NUMERICAL EXAMPLES AND DISCUSSION

The optimal designs for various values of n are shown in Figs. 3-11 for pin-ended
beam-columns and in Figs. 12-14 for pinned-fixed beam-columns. The loading, geometrical and
material properties used in these examples are indicated on the figures. The regions of the
optimal design governed by the limiting transverse and normal stresses are clearly dis-
tinguished. Thus the profile for normal stress constraint alone is shown by dotted lines, the
profile for transverse stress constraint alone by broken lines and finally, the optimal profile for both
the constraints by solid lines.

From a practical viewpoint, besides the strength requirements, the structural members are
required to meet serviceability requirements. In general, the maximum deflection of a structural
member must be less than the allowable value stipulated in the Codes of Practice and be safe
against buckling. All the numerical examples considered above were checked against these
requirements.

In order to judge the material saving made possible by optimization, the volume of the
optimal designs was compared with that of prismatic beam-columns which satisfied the same
strength requirements as the optimal beam-columns. The volume of such beam-columns,
together with the percentage savings made possible by optimization, is shown in Table 1. It is
clear that optimization leads to significantly lighter designs.

The paper has only briefly explored the applications of concepts from Differential Game
Theory to strength optimization of beam-columns. The method can also be applied to beam-
columns with other boundary conditions where they form a part of multiple span frames. These
results will be reported in future communications.
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Fig. 3. Ogtimal design_ of a simply. supported beam-column subject to a uniformly distributed laterai load
and an axial compression for a solid rectangular cross-section of constant depth and variable width, n = 1.
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Fig. 5. Optimal design of the structure shown in Fig. 3 for a solid rectangular cross-section of constant width

and variable depth, n = 3.
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Fig. 7. Optimal design of the structure shown in Fig. 6 for a solid circular cross-section, n = 2.
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Fig. 9. Optimal design of a simply supported beam-column subject to an end moment and an axial
compression for a solid rectangular cross-section of constant depth and variable width, n = 1.
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Fig. 11. Optimal design of the structure shown in Fig. 9 for a solid rectangular cross-section of constant width
and variable depth, n=3.
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Fig. 12. Optima} design of a clamped-pinned beam-column subject to a uniformly distributed lateral load
and an axial compression for a solid rectangular cross-section of constant depth and variable width, n = 1.
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Fig. 13. Optimal design of the structure shown in Fig. 12 for a solid circular cross-section. n = 2.
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Fig. 14. Optimal design of the structure shown in Fig. 12 for a solid rectangular cross-section of constant width
and variable depth, n = 3.

Table 1. Comparison of volume (m’) of the optimal designs shown in Figs. 3 and 14 with corresponding
prismatic beam-columns

Beam Shape Fig.3 Fig.4 Fig.5 Fig.6 Fig.7 Fig.8 Fig.9 Fig 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14
Optimal 043 052 031 065 075 02 057 053 022 048 050 035
Prismatic 0.51 065 040 1.06 .16 032 104 08 028 09 08 074
% Saving 16 20 22 39 35 19 45 36 21 47 40 53
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